LEAD METALLURGY IS FUNDAMENTAL TO THE CIRCULAR ECONOMY

Bart Blanpain, Markus Reuter, Annelies Malfliet
Content

- Introduction - Socrates project
- Pb policy brief
 - Metal Wheel
 - Criticality of lead for the circular economy
 - Flanders Metal Valley
Europe has large quantities of secondary industrial residues that contain significant concentrations of both critical and economically important metals.

European Training Network for the Sustainable, zero-waste valorisation of critical-metal-containing industrial process residues

From September 1, 2016 to August 31, 2020
Socrates: Frame & concept

https://youtu.be/9ilrNeKG4D8

Pb policy brief, June 2019
Socrates: Frame & concept

https://youtu.be/9ilrNeKG4D8

Pb policy brief, June 2019
Socrates: Frame & concept

- Targets ground-breaking metallurgical processes, incl. plasma-, bio-, solvo-, electro- and ionometallurgy, that can be integrated into *environmentally friendly, (near-)zero-waste valorisation flow sheets*

- Contributes to a more *diversified and sustainable supply chain for critical metals*

- Focus on 4 residue families
 1. Flotation tailings from primary Cu production
 2. Fe-rich sludges from Zn production
 3. Fayalitic slags from non-ferrous metallurgy
 4. Bottom ashes from incineration plants
Socrates: Scheme & WP’s

Four technical work packages:
1. Metal extraction
2. Metal recovery
3. Residual-matrix valorization
4. Advanced characterization, mapping & integrated assessment of flow sheets

Pb policy brief, June 2019
Socrates: Beneficiaries & partners

BENEFICIARIES

PARTNER ORGANISATIONS

15 Early-Stage Researchers

Pb policy brief, June 2019
Socrates: Communication

https://etn-socrates.eu/

Communications

Outreach communication
Read our press releases and watch the relevant videos and documentaries.

Science communication
All scientific publications of the project can be found here.

Blog
The ESRs are writing various blogposts about their research, secondments and/or phd-life in general!

Newsletter
Read the frequent newsletters here – and don’t forget to subscribe!
Overcoming challenges in the circular economy

Policy Brief 1 (January 2018):

The Social License to Operate for mining and recycling of critical metals

Policy Brief 2 (March 2018):

Lead metallurgy is fundamental to the circular economy

Policy Brief 3 (February 2019):

Pb policy brief, June 2019
Pb policy brief: the authors

Prof. Bart Blanpain
Department of Materials Engineering, KU Leuven (Belgium);
Academic head of the research group “High Temperature Processes and Industrial Ecology”

Prof. Markus Reuter
Director of the Helmholtz Institute Freiberg for Resource Technology (Germany);
His career combines various positions in industry and research

Dr. Annelies Malfliet
Department of Materials Engineering, KU Leuven (Belgium);
Research expert in the group of “High Temperature Processes and Industrial Ecology”

Pb policy brief, June 2019
Socrates Pb policy brief

Lead Metallurgy is Fundamental to the Circular Economy

Policy brief on why restricting lead is a bad idea

Pb policy brief, June 2019
Content of the policy brief

1. Role of lead in the Circular Economy (CE)

2. Implications of restricting lead metallurgy in the EU

3. Importance of the lead metallurgy infrastructure
Lead is frequently seen as a problematic metal that can be detrimental to human health;

Much less well known is its fundamental role in extractive metallurgy and how this is closely associated with the Circular Economy.

Molten lead has unique properties that means it can act as an efficient liquid carrier for critical raw materials such as In, Bi, Cd and Te.
Role of lead in the CE

Metal Wheel

LEGEND
Economically viable destinations of complex resources and materials, designed functional material combinations, scrap, residues etc. to metallurgical processing infrastructure (each segment) to produce refined metal, high quality compounds and alloys in best available technology

Circular Economy's Agile Carrier Metals Processing Infrastructure
Extractive Metallurgy's Backbone, the enabler of a Circular Economy (CE) as it also recovers technology elements used e.g. in renewable energy infrastructure, ICT, mobility etc.

Dissolves mainly in carrier metal if metallic (mainly pyrometallurgy - smelt)
Valuable elements recovered or (dissipative) lost (metallic, spore, compounds, alloy to less, also determines destiny. Leaked hyd & pyrometallurgical infrastructure determines % recovery.

Compounds mainly to dust, slime, spress (mainly hydrometallurgy - refine)
Collector of valuable minor elements as oxides/hydrates/complexes etc. and mainly recovered in separate economically viable destinations hydrometallurgical infrastructure of CE.

Mainly to be using lower value building materials & dissipative loss
Relatively lower value but recyclable part of products and materials processing. A sink for metals and loss from the CE system as oxides/compounds, usually labels but separate infrastructure.

Mainly Recovered Element
Compatible with Carrier Metals alloying element or can be recovered in subsequent processing.

Recovered in alloy/compound or Lost if in incorrect stream/scrap/module
Governed by functionality, if not detrimental to Carrier Metal or Product (refractory metals in EcO product report to slag/dust also intermediate product for cement etc.)

Mainly Lost Element: not always compatible with carrier metal or product
Detrimental to properties and cannot be economically recovered e.g. As dissolved in steel or aluminium will be lost.
Role of lead in the CE

Backbone of the CE’s extractive metallurgy and producing capacity
Carrier metals for technology elements

Especially interconnected Pb-Zn-Cu-Ni-Sn processing infrastructure required

Circular Economy’s Carrier Metals Processing Infrastructure
- Elements that dissolve in the carrier metal if metallic
- Elements that are collected as oxides/sulphates/chlorides/etc. in dust, slime, speiss
 - Mainly going to lower-value building-material products and dissipative loss
 - Mainly recovered element
 - R/L: Recovered in alloy/compound or lost if in incorrect stream/scrap/module
 - L: Mainly lost element: not always compatible with carrier metal or product

Pb policy brief, June 2019
Role of lead in the CE

Pb policy brief, June 2019
Restricting lead metallurgy in the EU would not only have a detrimental impact on the lead industry, but also on all the industries linked to it that work with elements like Ag, Cu, Sb, Sn, Te, and Zn.
We could ask the question…

What would happen if we remove lead from the Metal Wheel, from the metallurgical infrastructure?
Need for lead (metallurgy)

- By removing lead and its metallurgy, the wheel will not function anymore
Constraining lead metallurgy would have a detrimental impact, not only on the lead industry itself, but also on all the industries linked to it.

End of the “CE ride” if the Metal Wheel is seriously disturbed by eliminating lead.
The focus must be on correctly and comprehensively minimizing the risks of lead-containing materials for society and carefully managing them, rather than attempting to ban the use of lead.

An environmentally friendly and energy-efficient lead infrastructure together with the associated research and know-how in Europe is absolutely vital if the continent is to maintain its global leadership in the Circular Economy.
Infrastructure and know-how on lead and base-metal metallurgy have been developed in the EU to treat Pb-containing ores and residues and to recycle complex EoL products.

Connectivity of lead to the Zn-Co-Ni-Sn processing infrastructure is for example reflected in Flanders Metal Valley (FMV).
Flanders Metal Valley
- The know-how and technology to treat Pb-containing materials is in place.
- Lead metallurgy is a well-developed process to recover technology elements.
- Lead metallurgy is part of a complex, industrial symbiosis system to manage complex input material.
No smart future without lead metallurgy

Disrupting a basic metallurgy infrastructure in the EU will have far-reaching consequences

- Negative impact on the inflow, production, recycling, and availability of many other metals
- Thereby jeopardizing our future plans for energy storage, smart cities and clean technologies in the EU

Key to keep and further develop the metals infrastructure and know-how in Europe to continue its global leadership role in the CE in the most environmentally friendly and energy-efficient manner