**KU LEUVEN** 

## Electron Probe Micro Analysis

Annelies Malfliet SIM<sup>2</sup>/MRC event 3 June 2022



### Electron Probe Micro Analysis (EPMA)





| No.       | SiO2     | MgO   | A1203  | CaO    | Total   |
|-----------|----------|-------|--------|--------|---------|
| 1         | 41.475   | 5.464 | 10.634 | 42.232 | 99.805  |
| 2         | 41.467   | 5.631 | 10.471 | 42.073 | 99.642  |
| з         | 41.140   | 5.613 | 10.455 | 42.573 | 99.781  |
|           |          |       |        |        |         |
|           |          |       |        |        |         |
| 16        | 40.919   | 5.980 | 10.463 | 42.698 | 100.060 |
| 17        | 40.615   | 5.929 | 10.640 | 42.817 | 100.001 |
| 18        | 40.866   | 5.961 | 10.619 | 42.900 | 100.346 |
|           |          |       |        |        |         |
| Minimum   | 40.398   | 5.421 | 10.455 | 42.073 | 99.104  |
| Maximum   | 41.576   | 5.980 | 10.734 | 42.963 | 100.410 |
| Average   | 40.996   | 5.750 | 10.587 | 42.563 | 99.896  |
| Sigma     | 0.369    | 0.197 | 0.080  | 0.267  | 0.312   |
| "No. of d | lata" 18 |       |        |        |         |
|           |          |       |        |        |         |



#### The principle of EPMA

#### **Electron Probe Micro Analyzer**

#### **Microarea and surface analysis instrument**





**KU LEUVEN** 

### **Electron Probe Micro Analyzer**









## EPMA vs. SEM

#### Imaging with SE/BSE



SEM

EPMA

Compared to SEM, imaging is not great in EPMA...

### EPMA vs. SEM

X-ray detection

Energy dispersive spectrometer (EDS) → Sorts X-rays based on energy

#### + Wavelength dispersive spectrometers (WDS) → Sort X-rays based on wavelength

SEM

### EPMA vs. SEM

#### **X-ray detection**



## Element detection and quantification is great in EPMA!



SEM

EPM

- Higher spectral resolution
- Higher beam currents Higher precision
   Higher accuracy Lower detection limits

Spectra from: http://www.mcswiggen.com/TechNotes/Qual\_Analysis.htm

#### From detection to quantification

Concentration of element i C<sub>i</sub> is determined as:

$$C_{\rm i}/C_{\rm std} = k_{\rm i} \ ZAFc$$

 $k = I_{
m unknown}/I_{
m standard}$ 

Z = atomic number correction
A = absorption correction
F = secondary characteristic fluorescence correction
c = continuum fluorescence correction

 $I_{\text{standard}}$  is measured on available standards

Several metal, mineral and other standards are available at MTM

# Applications and SWOT analysis







#### Examples of application domains

High temperature metallurgical processing (slags, metals,...)

• Phase equilibria, reaction phenomena, diffusion profiles, ...

Characterisation of process materials (slags, tailings, sludges, ...)

• Quantification and distribution of minor and trace elements, ...

#### Geology (basalts, minerals, ...)

• Phase equilibria, (minor and trace) element partitioning and quantification, ...

Other: ceramics, semiconductors, biology, medical and dental applications, ...

#### Example of quantitative analysis

| Wt.%      | CaO        | SiO <sub>2</sub> | MgO        | Al <sub>2</sub> O <sub>3</sub> | Total      |
|-----------|------------|------------------|------------|--------------------------------|------------|
| Crystals  | 49.5 ± 0.2 | 37.4 ± 0.2       | 11.9 ± 0.1 | 0.3 ± 0.2                      | 99.1 ± 0.3 |
| Amorphous | 37.9 ± 0.2 | 41.0 ± 0.5       | 5.0 ± 0.2  | 15.1 ± 0.4                     | 99.1 ± 0.5 |

~1 min/spot 5 spots/phase





#### Example of mapping



1024 x 512 pixels 20 ms/pixel ~3h





12.5 0.0



#### SWOT analysis of EPMA-WDS





Low detection limit (< 100 ppm)

### Case study





#### Characterization of REE minerals in bauxite residue

Research within MSCA-ETN Redmud project

- Combined EPMA, HRTEM, LA-ICP-MS, µ-raman spectroscopy study of mineral phases in bauxite residue
- EPMA in particular useful for:
  - Trace element analysis
  - Analysis of LREE, considering overlap in LREE peaks with EDS

Vind J. et al. (2018). Rare Earth Element Phases in Bauxite Residue. MINERALS, 8 (2), 77



### Quantitative analysis of Sc-containing hematite



|                                      | Sc-hosting<br>hematite (n = 24) |      | Sc-depleted<br>hematite (n = 32) |      |
|--------------------------------------|---------------------------------|------|----------------------------------|------|
|                                      | Average                         | S.D. | Average                          | S.D. |
| Fe <sub>2</sub> O <sub>3</sub> (wt%) | 92.02                           | 4.06 | 93.81                            | 3.49 |
| TiO <sub>2</sub> (wt%)               | 3.98                            | 2.17 | 1.02                             | 0.82 |
| Al <sub>2</sub> O <sub>3</sub> (wt%) | 1.79                            | 0.60 | 1.91                             | 1.47 |
| SiO <sub>2</sub> (wt%)               | 0.71                            | 0.60 | 1.11                             | 0.68 |
| Na₂O (wt%)                           | 0.29                            | 0.26 | 0.43                             | 0.27 |
| CaO (wt%)                            | 0.49                            | 0.32 | 0.44                             | 0.17 |
| Cr <sub>2</sub> O <sub>3</sub> (wt%) | 0.24                            | 0.12 | 0.05                             | 0.05 |
| V <sub>2</sub> O <sub>3</sub> (wt%)  | 0.17                            | 0.11 | 0.07                             | 0.12 |
| Sc (mg/kg)                           | 190                             | 70   | 30                               | 20   |
| Total (wt%)                          | 99.74                           | 3.39 | 98.99                            | 2.28 |

# Quantification and mapping of Nd-La predominant particles



19

# How to get access to EPMA







#### Access



Annelies Malfliet: annelies.malfliet@kuleuven.be Pieter L'hoëst: pieter.lhoest@kuleuven.be



- €350 per weekday or weekend + €55/h for operator assistance
- €2100 for a training

#### (Prices for KU Leuven)

- What do you want to measure?
- Is EPMA suitable and best technique?
- How to prepare your sample?



• Available timeslot+operator can take up to 2-4 weeks





•

## Thank you for your attention!

## Questions?

